对转移映射保半环诱导的赋值代数的轮廓解的问题进行了研究。得到若转移映射,是一个反保序的半环同态,则,是保轮廓解的。如果两个半环间的一个转移映射,是单调的,则若原赋值与转移后对应的新赋值的轮廓解都非空,则一定存在一个轮廓岛,它是新赋值的轮廓解,也是原赋值的轮廓解,即x0∈Cφ∩Cφ。
The map preserving solution configuration of valuation algebra induced by a semiring is studied. The transfer function f preserves solution configuration is obtained if f is an order-reflecting semiring homomorphism. In addition, if the transfer function f is monotonous, then there exists a solution configuration x0 of the new valuation such that x0 is also a solution configuration of the primal valuation when the set of solution configuration of the two valuations are not empty.