将插值曲线约束于给定的区域之内是曲线形状控制中的重要问题。构造了一种分母为线性的1连续有理四次插值样条。该有理四次插值样条中含有参数和调节参数,因而可以在插值条件不变的情况下通过对参数的选择进行曲线的局部修改,给约束控制带来了方便,同时可以通过对参数的控制实现2连续的插值。对该种插值曲线的区域控制问题进行了研究,给出了将其约束于给定的折线、二次曲线之上、之下或之间的充分条件。最后给出了数值例子。
To constrain the interpolating curves to be bounded in the given region is an important problem in curve design. A rational quartic interpolating spline with linear denominator is constructed. The sufficient conditions for the interpolating curves to be above, below or between the given broken lines or piecewise quadratic curves are derived. An example is given.