分类自同构群的基柱为李型单群E8(q)的区传递2-(v,k,1)设计,得到如下定理:设D为一个2-(v,k,1)设计,G≤Aut(D)是区传递、点本原但非旗传递的.若q〉24√(krk-kr+1)f(这里kr=(k,v-1),q=p^f,p是素数,f是正整数),则Soc(G)≌/E8(q).
A 2-(v, k, 1) design admitting a block transitive automorphism group whose socle is the simple groups Es(q) of Lie type is classified and the following theorem is proved. Let D be a 2-(v, k, 1) design admitting a block-transitive, point-primitive but not flag-transitive automorphism group G. Let kr = (k,v - 1), q = p^f for prime p and positive integer number f. If q 〉 24√(krk-kr+1)f, then Soc(G)≌/ E8(q).