位置:成果数据库 > 期刊 > 期刊详情页
流形上的Laplacian半监督回归
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学国际WIC研究院,北京100022, [2]中国科学院自动化研究所,北京100080
  • 相关基金:国家“九七三”重点基础研究发展规划基金项目(2004CB318103);国家自然科学基金项目(60575001,60673015)
中文摘要:

把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累.

英文摘要:

Recently, manifold learning and semi-supervised learning are two hot topics in the field of machine learning. But there are only a few researches on semi-supervised learning from the point of manifold learning, especially for semi-supervised regression. In this paper, semi-supervised regression on manifolds is studied, which can employ the manifold structure hidden in datasets to the problem of regression estimation. Firstly the framework of Laplacian regularization presented by M. Belkin et al. is introduced. Then the framework of Laplacian semi-supervised regression with a class of generalized loss functions is deduced. Under this framework, Laplacian semi-supervised regression algorithms with linear ε- insensitive loss functions, quadric ε-insensitive loss functions and Huber loss functions are presented. Their experimental results on S-curve dataset and Boston Housing dataset are given and analyzed. The problem of semi-supervised regression on manifolds is interesting but quite difficult. The aim of this paper is only to accumulate some experience for further research in the future. There are still many hard problems on semisupervised regression estimation on manifolds, such as constructing statistical basis of the algorithm, looking for better graph regularizer in the framework of Laplacian semi-supervised regression, designing quicker algorithms, implementing the algorithm on more datasets and so on.

同期刊论文项目
期刊论文 11 会议论文 3 著作 2
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349