通过刚性模型风洞试验和 CFD 数值模拟,对某拟建220m 高冷却塔内表面风荷载进行研究,并考虑了挡风板、填料层透风率等参数对内压的影响。研究表明:刚性模型试验忽略模拟外表面几何相似及实塔运行过程中产生的向上抽力对内压测试结果基本没有影响;冷却塔内表面风压对风速不敏感,内压基本不受来流风速影响;在塔底设置十字挡板后,塔内风压略有减小,风压沿环向、高度分布的均匀性更好;内压绝对值以填料层透风率为0%时最大,并随透风率的增加略有减小,但当透风率大于10%后变化较小;总的来说,内表面风压系数沿环向、高度基本不变,B 类风场中,平均风压系数约为-0.50,脉动风压系数约为0.045;均匀流场中,平均风压系数约为-0.61,脉动风压系数约为0.035。
The internal wind loading of a 220 m high super large cooling tower is studied by means of wind tunnel test and CFD numerical simulation,and the influence of parameters such as ventilation rate on internal pressure is taken into account.The results of present study show that the shortcomings of the rigidity model manometric experiment hardly have effect on test result of inner surface pressure.Meanwhile,it is found that internal wind loading is insensitive to wind speed and unaffected by test velocity.When cross baffle is installed at the bottom of tower,in-ternal pressure appreciably decreases and the homogeneity of distribution along hoop and meridio-nal is better.The max absolute value of internal pressure is found when the ventilation ratio of stuffing layers is 0%,and with the increases of ventilation ratio,the absolute value decreases slightly.However,the internal pressure changes slightly as the ventilation ratio greater than 10%.In general,the distributions of internal pressure along hoop and meridional are basically the same,the average pressure coefficient of-0.50 and fluctuating pressure coefficient of 0.045 are found in wind field of terrain category B,while-0.61 and 0.035 are found in uniform flow field respectively.