借助环绕定理和非线性分析技巧,研究如下一类带Hardy-Sobolev临界指数和权函数的半线性椭圆方程{-Δu-μu/(|x|~2)=λu+K(x)(|u|~2~(s)-2u)/(|x|~s),x∈Ω;u=0,x∈Ω,,解的存在性,其中Ω是RN具有光滑边界的有界开区域,0∈Ω,N≥5,0≤s≤2,0≤μ≤〔(N-2)/2〕~2,λ〉0,K(x)是Ω上有界正函数.
Using linking theorem and analytic technique, we discuss the existence of nontrivial solutions for the following semilinear elliptic problem with Hardy-Sobolev critical exponents and weights {-Δu-μu/(|x|~2)=λu+K(x)(|u|~2~(s)-2 u)/(|x|~s),x∈Ω;u=0,x∈Ω,where Ω is an open bounded domain of R~N with smooth boundary Ω and 0∈Ω, N≥5, 0s2,0≤μ〔(N-2)/2〕~2, λ0, and K (x) is a bounded positive function on Ω.