位置:成果数据库 > 期刊 > 期刊详情页
Choice of reference surfaces for machined surface roughness in milling of SiC_p/Al composites
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:苏州大学机电工程学院、机器人与微系统中心、苏州纳米科技协同创新中心,苏州215000
  • 相关基金:国家自然科学青年基金(61503270)、国家自然科学基金(61327802)、国家自然科学青年基金项目(61203208)资助
中文摘要:

针对夜间只有车灯照射路面图像整体较暗、光照不均匀、车道线不易检测的问题,提出了一种夜间车道线识别方法。首先,对预处理后的图像采用Laplacian算子进行边缘增强;然后,结合Otsu算法进行Canny边缘检测,再在边缘图像底部1/3区域中利用Hough变换进行直线拟合;最后,在斜率约束的基础上提出了一种内侧车道线提取算法,实现了车辆所在车道内侧车道线的检测。针对多种夜间车道线图像进行实验,结果表明,该算法准确提取出了内侧车道线。提出的方法能克服图像较暗和光照不均的影响,排除旁侧车道线、护栏等的干扰,有助于夜间车辆各行其道。

英文摘要:

It is difficult to detect the nighttime lane lines which showed darker and uneven lighted, for overco- ming these problems, a lane recognition method was proposed. Firstly, edge enhancement based on Laplacian was used to enhance the pre-processing images' edge. Then, image edge was detected by canny based on Otsu algo- rithm and the straight line of a third at the bottom of edge image was detected by Hough transform. Finally, an in- side lane line extraction algorithm was proposed on the basis of slope constraint and realized marking the inside lane that the vehicle driving on. By experimenting with various lane markers, this algorithm can realize the lane line de- tection. The proposed approach can overcome the influence of uneven light and be able to eliminate the interference from the side lane line, guard rail, etc. Lane line detection is conducive to the vehicle running on its road.

同期刊论文项目
同项目期刊论文