位置:成果数据库 > 期刊 > 期刊详情页
视觉与惯性传感器融合的隐式卡尔曼滤波位置估计算法
  • ISSN号:1000-8152
  • 期刊名称:Control Theory & Applications
  • 时间:2012
  • 页码:833-840
  • 分类:TP249[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京航空航天大学自动化科学与电气工程学院,北京100191, [2]北京航空航天大学虚拟现实技术与系统国家重点实验室,北京100191
  • 相关基金:国家“973”计划资助项目(2010CB327904); 国家自然科学基金资助项目(61104012); 教育部博士点基金资助项目(20111102120008)
  • 相关项目:基于加性分解的非线性系统鲁棒重复控制方法研究
中文摘要:

机器人对自身位置的实时感知在机器人技术中非常重要.本文主要研究机器人技术中一类基于视觉与惯性传感器的位置估计问题.与传统的状态估计问题不同的是,所研究位置估计问题为带有隐式观测方程的线性状态估计问题.为此提出一种能够解决此类估计问题的隐式卡尔曼滤波器,并给出了详细的滤波器设计过程.另外采用扩展变量法将加速度信息中的偏移量作为滤波器状态来估计,以补偿其对位置估计结果的影响.仿真结果显示,所给出的隐式卡尔曼滤波器收敛,加速度偏移带来的影响被有效的补偿.

英文摘要:

In mobile robotics, position-sensing is crucial to a robot. We investigate a type of online position estimations based on visual and inertial sensor fusion. Being different from the traditional state estimation, our position estimation is a linear state estimation with implicit observation equations. To this end, an implicit Kalman filter is proposed and designed in details for this position estimation. Furthermore, a state augmentation method is employed in which the accelerometer bias is taken as a state of the filter to compensate for its effect to the position estimation results. Simulation results show that the implicit Kalman filter is convergent, and the effect of the accelerometer bias is eliminated from the position estimation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084