该文运用变分法证明了与Fisher-Kolmogorov's方程行波解相关的一个二阶差分方程最快异宿解的存在性.获得了能量泛函在加权Hilbert空间上的最小值点,即最快异宿解.
In this paper, we prove the existence of fast heteroclinic solutions for a secondorder difference equation related to traveling wave solutions of Fisher-Kolmogorov's equation. By means of variational approach, the fast heteroclinic solutions are obtained as minimizers of an energy functional on a weighted Hilbert space.