位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群优化的多特征融合的商标图像检索
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东南大学生物医学工程学院,南京210096, [2]南京财经大学电子商务省级重点实验室,南京210046, [3]东南大学计算机科学与工程学院,南京210096
  • 相关基金:国家自然科学基金(No.61073138,No.61103141);江苏省高校自然科学研究重大项目(No.11KJA520004)
中文摘要:

提出一种基于粒子群优化的多特征融合的商标图像检索方法,该方法可自动优化多特征融合的权重,提高图像检索系统的自适应性,解决了多特征商标图像检索中的权重分配问题。在1000幅图像构成的商标图像库进行检索实验,实验结果表明,与基于单一特征的检索方法和一些多特征融合的检索方法相比,提出方法的检索性能最优。

英文摘要:

This paper develops a method of trademark image retrieval based on particle swarm optimization in multi-feature fusion.It can optimize the weights of multi-feature fusion automatically,improve self-adaptive of the image retrieval system,and solve the allocation problem of feature weights in the trademark image retrieval.After retrieving in the trademark image database constituted of 1000 images,the results show that the proposed method has a better retrieval performance than the single-feature-based retrieval methods and some multi-feature-fusion retrieval methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887