位置:成果数据库 > 期刊 > 期刊详情页
基于时空滤波的无线传感器网络抗差节点定位算法
  • 期刊名称:高技术通讯
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] P228[天文地球—大地测量学与测量工程;天文地球—测绘科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所,北京100080, [2]中国科学院研究生院,北京100080, [3]北京邮电大学软件学院,北京100876, [4]北京航空航天大学软件学院,北京100083
  • 相关基金:国家自然科学基金(60873244,60772070)和863计划(2007AA122321,2006AA102253)资助项目.
  • 相关项目:无线传感器网络测量关键技术研究
中文摘要:

针对无线传感器网络的最小二乘定位算法抗差性的不足,提出了一种基于时空滤波(STY)的抗差性加权最小二乘(WLS)节点定位算法——吣。该算法基于空间域滤波的数据一致性检测算法利用相邻节点间必须满足的几何约束关系,采用优化矩阵操作,剔除粗差邻居节点,其计算复杂度为多项式的平方。通过使用具有2步收敛特性的DFP算法,最小化目标代价函数,实现节点的快速定位。实验结果表明,在均匀网格拓扑或各向异性C型网格拓扑下,该算法均可有效识别和剔除测距低估粗差点,其定位精度明显优于未进行空间一致性检测的加权最小二乘定位算法,当网络平均连通度较低时,该优势表现得尤为明显。

英文摘要:

This paper presents STLS, a robust weighted least squares localization algorithm based on spatio-temporal filter for wireless sensor networks to improve the positioning resilience of the least squares scaling when there are outliers in the ranging measurements. Its ranging consistency check scheme is based on geometric ranging inequations to which neighboring nodes must obey. By building matrixes, the STLS speeds up identifying and eliminating the outliers of the ranging measurements only with the computing complexity of quadratic polynomial, and employs a 2-step-convergence DFP algo- rithm to minimize the cost function to fast localize the unknown nodes. For received signal strength based range measurements, regardless of uniform grid topology or irregular C-shaped grid topology, the extensive simulation results confirm that STLS can detect and delete the underestimated outliers effectively and outperforms the traditional weighted least squares scaling which has no consistency check and demonstrates more advantages when there are sparse range measurements.

同期刊论文项目
期刊论文 27 会议论文 7
期刊论文 31 会议论文 8 著作 1
同项目期刊论文