位置:成果数据库 > 期刊 > 期刊详情页
一种基于局部对比度的分块压缩感知多聚焦图像融合算法
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:TN957.52[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:华东交通大学软件学院,江西南昌330013
  • 相关基金:国家自然科学基金资助项目(61365008); 江西省自然科学基金资助项目(20142BAB207025); 江西省教育厅科技资助项目(GJJ14582)
中文摘要:

提出了一种有效的基于局部对比度的分块压缩感知多聚焦图像融合算法。首先采用结构随机矩阵对源图像进行分块压缩测量,获得分块压缩测量值;其次,根据块局部对比度选择清晰的块进行初步融合;再通过多数滤波对初步融合结果进行一致性校验,得到最终的融合结果;最后,通过平滑投影Landweber算法(SPL)重构融合图像。实验结果表明,与目前基于BCS图像融合方法相比,本文所提方法对于多聚焦图像融合,在主观视觉感知以及客观定量指标如信息熵、互信息及平均梯度及算法运行效率等方面均有明显改进。

英文摘要:

An efficient local contrast and block compressed sensing( BCS) based on multi-focus image fusion algorithm is proposed. Firstly,structural random matrix is used as measurement matrix to obtain a high efficiency sample performance. Secondly,a local contrast measurement in CS domain is proposed to classify the clarity block and the de-focus block,and upon which the larger local contrast block is selected as the fused block. Thirdly,a consistency verification process based on majority filter is introduced to modify the initial fusion CS image. Finally,smoothed projection Landweber( SPL) algorithm is used to reconstruct the fused image to overcome the block artifact. The experimental results show that,compare to the current BCS based image fusion methods,the proposed method achieves good improvement in subjective visual perception quality as well as in objective quantified quality index such as information entropy,mutual information and average gradient for multi-focus image fusion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509