位置:成果数据库 > 期刊 > 期刊详情页
Theoretical investigations of the local distortion and electron paramagnetic resonance parameter for CdCl2:V^2+ and CsMgX3:V^2+(X=Cl,Br) systems
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:O48[理学—固体物理;理学—物理] O614.411[理学—无机化学;理学—化学]
  • 作者机构:[1]Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China, [2]College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
  • 相关基金:Project supported by the Doctoral Education Fund of the Education Ministry of China (Grant No. 20100181110086) and the National Natural Science Foundation of China (Grant Nos. 11104190 and 10974138).
中文摘要:

The elastic constant,structural phase transition,and effect of metallic bonding on the hardness of RhN 2 under high pressure are investigated through the first-principles calculation by means of the pseudopotential plane-wave method.Three structures are chosen to investigate for RhN 2,namely,simple hexagonal P6/mmm(denoted as SH),orthorhombic Pnnm(marcasite),and simple tetragonal P4/mbm(denoted as ST).Our calculations show that the SH phase is energetically more stable than the other two phases at zero pressure.On the basis of the third-order Birch-Murnaghan equation of states,we find that the phase transition pressures from an SH to a marcasite structure and from a marcasite to an ST structure are 1.09 GPa and 354.57 GPa,respectively.Elastic constants,formation enthalpies,shear modulus,Young’s modulus,and Debye temperature of RhN 2 are derived.The calculated values are,generally speaking,in good agreement with the previous theoretical results.Meanwhile,it is found that the pressure has an important influence on physical properties.Moreover,the effect of metallic bonding on the hardness of RhN 2 is investigated.This is a quantitative investigation on the structural properties of RhN 2,and it still awaits experimental confirmation.

英文摘要:

The elastic constant, structural phase transition, and effect of metallic bonding on the hardness of RhN2 under high pressure are investigated through the first-principles calculation by means of the pseudopotential plane-wave method. Three structures are chosen to investigate for RhN2, namely, simple hexagonal P6/mmm (denoted as SH), orthorhombic Pnnm (marcasite), and simple tetragonal P4/mbm (denoted as ST). Our calculations show that the SH phase is energetically more stable than the other two phases at zero pressure. On the basis of the third-order Birch Murnaghan equation of states, we find that the phase transition pressures from an SH to a marcasite structure and from a marcasite to an ST structure are 1.09 GPa and 354.57 GPa, respectively. Elastic constants, formation enthalpies, shear modulus, Young's modulus, and Debye temperature of RhN2 are derived. The calculated values are, generally speaking, in good agreement with the previous theoretical results. Meanwhile, it is found that the pressure has an important influence on physical properties. Moreover, the effect of metallic bonding on the hardness of RhN2 is investigated. This is a quantitative investigation on the structural properties of RhN2, and it still awaits experimental confirmation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406