提出了一种后轮脉冲主动转向控制策略,运用脉冲信号作为控制器输出的后轮主动转向控制方法,对此做了理论分析和试验研究.首先,设计了产生脉冲信号的液压系统,并分析了此系统的运行对悬架参数和车辆稳态和瞬态响应的影响;分析不同脉冲参数(频率,振幅)对车辆横摆运动的影响并确定最优的脉冲参数.其次,综合跟随理想横摆角速度和抑制汽车质心侧偏角的方法,提出了控制策略与算法;运用基于CarSim和Simulink的联合仿真方法,分析此系统对汽车横摆稳定性能的影响;最后,安装液压脉冲发生器进行整车试验研究,验证仿真结果的可信性,并评价后轮脉冲转向的实用性.仿真和试验结果表明:后轮脉冲主动转向能够有效的跟踪横摆角速度和质心侧偏角提高车辆的横摆稳定性,同时可以减少质心侧倾角和侧向加速度,提高汽车的操纵稳定性.
The analysis and test of a rear wheel pulsed active steering control strategy was proposed. First, the effect of installation and operation of hydraulic pulse actuator on the suspension parameters and the improvement of the vehicle's steady and transient state response due to the control of active pulse were investigated. Second, a full vehicle model of a SUV equipped with the steering actuator was built in Carsim and co-simulated with Simulink as the control module. The structure of control strategy considering yaw rate error and side-slip angle error was designed to improve the stability and path. Finally, a whole test bed was designed and assembled for a SUV to carry out road experiments with different maneuvers to validate the results obtained from the simulations and to assess the applicability of the pulsed active steering system. Simulation and test results have indicated that considerable improvement in the yaw stability control can be achieved. Meanwhile, the rear wheel pulse active controller can reduce the lateral acceleration and the roll angle.