欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Turing structures and stability for the 1-D Lengyel-Epstein system
期刊名称:J. Math. Chem.
时间:2012.9.9
页码:2374-2396
相关项目:非均匀恒化器模型共存态的唯一性、多解性与Hopf分歧
作者:
Meihua Wei、Jianhua Wu、Gaihui Guo|
同期刊论文项目
非均匀恒化器模型共存态的唯一性、多解性与Hopf分歧
期刊论文 29
著作 1
同项目期刊论文
Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibit
Analysis of Bifurcation and Stability on Solutions of a Lotka-Volterra Ecological System with Cubic
具有质载和内抑制剂的非均匀恒化器模型共存解的多重性
The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat
Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model
A sufficient and necessary condition for the existence of positive solutions for a prey-predator sys
Existence of positive solutions for a prey-predator model with refuge and diffusion
Spatial pattern in an ecosystem of phytoplankton-nutrient from remote sensing
Hopf bifurcation in general Brusselator system with diffusion
Qualitative analysis on a predator-prey model with Ivlev functional response
Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models
一类捕食-食饵模型的共存性
一类带有扩散的Lotka-Volterra竞争系统的共存态
Banach空间上一类算子微分系统解的存在性与唯一性
Hopf bifurcation in the Brusselator system with diffusion
具有非线性扩散的捕食-食饵模型的整体分歧
带交叉扩散的Ivlev捕食-食饵模型的分歧正解
Uniqueness and stability for positive solutions of a reaction-diffusion model with autocatalysis
Positive solutions for a predator-prey interaction model with Holling-type functional response and d
一类非均匀恒化器竞争模型的全局分歧和渐近行为
Multiplicity results for the unstirred chemostat model with general response functions
On qualitative analysis for a two competing fish species model with a combined non-selective harvest
一类恒化器竞争模型共存态的全局分歧
一类自催化反应扩散模型正解的唯一性与稳定性
具有扩散的Brusselator系统的Hopf分支
具有扩散的广义Brusselator系统的Hopf分歧
具有非线性扩散的捕食一食饵模型的整体分歧