基于五阶线性耗散紧致格式(DCS5)和七级龙格原库塔时间积分算法,根据数值增长因子对精确增长因子的最佳逼近原则,提出与DCS5格式耗散性相适应的优化方法,并得到相应的七级五阶低耗散低色散龙格原库塔(LDDRK)算法.求解标量线性对流方程和线化Euler方程得到的一维波传播问题的数值结果显示,七级五阶LDDRK算法的精度优于七级七阶精度的标准龙格原库塔算法.
Based on the fifth order dissipative compact spatial finite difference scheme(DCS5) and the seven stage Runge-Kutta time integration scheme, with the principle that numerical amplification factor approaches the real amplification factor optimally, an optimal methodology for time integration scheme is proposed and a seven stage fifth order LDDRK scheme is obtained. Numerical results of one-dimensional wave propagation obtained by convection equation and linearized Euler equations show that the proposed LDDRK scheme has lower dissipation than standard Runge-Kutta schemes.