在结构网格流场求解软件TRIP基础上,发展了-套静气动弹性计算模块.首先简要介绍了静气动弹性计 算模块总体架构、构成单元和耦合策略,然后详细介绍了构成单元中采用的-些数值计算方法.最后利用大展弦 比机翼、 DLR-F6翼身组合体模型和HIRENASD机翼模型对静气动弹性计算模块进行了测试和精度验证.大展 弦比机翼计算结果表明柔度矩阵、模态叠加和有限元数值求解在模态选取合适的情况下能够得到-致的变形计算 结果.DLR-F6和 HIRENASD模型不同计算软件的结果-致性表明本文静气动弹性计算模块采用了正确的算法 流程,而计算与试验的结果-致性表明静气动弹性计算模块具有很好的预测精度.
A static aeroelastic computational moduee is developed on the f low solver T R IP. Firstly, the frame, main component units and coupling strategy of the static aeroelasticcomputational module are Introduced b r ie f ly . Then numerical methods used jn the component units are described jn detail. Final ly, the static aeroelastic computational module is tested and validated through three cases : high respect-ratio w in g, D LR -F 6 wing-body model andH IRENASD wing model. The computational results of high respec--ratio wing show that flexible matrix method, modal superposition method and f in ite element method can have samedeformation results when the structure modes are selected properly. The result consistency ofDLR -F 6 or H IRENASD model among different solvers demonstrates that the static aeroelastic computational module has adopted a correct algorithm procedure. The results consistency of DLR -F 6 or H IRENASD model between computations and tests shows that the present static aeroelastic computational module has a good prediction precision.