位置:成果数据库 > 期刊 > 期刊详情页
基于差分进化优化的约简最小二乘支持向量机
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工业大学控制与仿真中心,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61074127)
中文摘要:

针对最小二乘支持向量回归机的解缺乏稀疏性、预测速度慢等问题,采用向量相关分析在高维特征空间约简支持向量.为使约简模型能最佳逼近原模型,提出原模型与约简模型预测训练样本的平方误差和作为新性能评价准则.为得到最优约简模型,定义了离散加法、减法和乘法算子,并将新性能评价准则作为适应度函数,采用整数编码的差分进化算法进行全局优化.4个标准数据集实验结果表明,与前人提出的3种性能评价准则相比,新算法得到的约简模型具有更好的泛化性能,并且在泛化性能略有下降情况下,支持向量数目大幅减少.

英文摘要:

Aiming at lack of sparseness of the solutions of least squares support vector regression machine which leads to slow prediction speed and other problems,the vector correlation analysis was employed to reduce the support vectors in the high dimensional feature space.In order to make the reduced model best approximate the original one,sum squared prediction errors of training samples between the reduced model and original one were taken as the novel performance evaluation criterion.Discrete addition,subtraction and multiplication operator were defined and the novel performance evaluation criterion was used as fitness function.The best reduced model globally optimized by integer coded differential evolution algorithm could be obtained.The experimental results on four benchmark datasets show that reduced model obtained by the novel algorithm has better generalization performance,compared with the other three performance evaluation criterions presented before.And reduced model obviously decreases support vectors at cost of little generalization performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823