通过在格子Boltzmann(LBM)热模型中添加参数项,使得在对应的宏观传热方程中,消除了一阶非线性误差项,具备二阶精度.通过Rayleigh-Benard对流数值试算,初步探索该二阶精度格式及其对应的一阶精度格式三个热模型的传热特征和适应性,并做出相应对比分析.针对一二阶精度模型在Ra数极高或热传导系数极大时,Nu数的计算与经验值相比出现较大偏差,分析LBM对应宏观热传导方程的截断误差后,在平衡分布函数中引进一个调节因子.通过调节对应宏观传热方程的截断误差项系数,校正Nu数的计算偏差,提高模拟精度,拓展模拟范围,增强了LBM作为一个数值方法在传热中的适应性.
Lattice Bohzmann thermal models with second-order accuracy are obtained with an extra parameter term. They are employed to Rayleigh-Benard convection heat transfer and are compared with original models. In order to reduce error of Nu number at large Ra number and thermal diffusivity, we analyze truncation error of corresponding heat-transfer equation and introduce an adjusting parameter in the equilibrium distribution function. Applicability of LBM heat-transfer models is extended.