位置:成果数据库 > 期刊 > 期刊详情页
人工神经网络在客源市场分区中的应用——以武夷山市为例
  • ISSN号:0479-8023
  • 期刊名称:《北京大学学报:自然科学版》
  • 时间:0
  • 分类:F590[经济管理—旅游管理;经济管理—产业经济]
  • 作者机构:[1]北京大学环境学院资源与环境地理系,地表过程分析与模拟教育部重点实验室,北京100871
  • 相关基金:国家自然科学基金(40571059)资助项目
中文摘要:

客源市场分区对于旅游营销决策具有很重要的指导作用,目前对客源市场的分区缺乏定量化的方法.以武夷山市为例,用人工神经网络中的SOFM网络对其国内客源市场分区进行了研究,通过对影响旅游需求的11个变量进行因子分析,将得到的3个因子为输入变量,将国内客源市场分为3个区,结果与在武夷山景区进行问卷调查得到的结果基本一致,研究方法对国内其他类似旅游景区开发具有显著的借鉴意义.

英文摘要:

The clustering analysis of tourist market plays a lead role in the exploitation of touting market. Until now, although the quantitative methods are usually thought to be more dependable, more qualitative methods have been used to the clustering of tourist market due to the complexity of the behaving system of tourists. Artificial neural networks, simulating some characteristics of human brain, are proved to be effective models to the analysis of complex system. They are composed of many simple intercommunicating neurons that work in parallel to solve a special problem. They are much faster and effective than most conventional methods, especially for complicated behavior system that are impacted by all kinds of different factors, for once a network has been set up, it can learn in a self-organizing way which has much common in the mimic simple biological nervous system. In this paper, a soundly trained self-organizing feature map (SOFM) is employed to the clustering of tourist market of the Wuyishan, a famous scenic spot in the Fujian province, the southeast of China. First, concerning the available data, 11 variables that have influence on the demand of tourists are selected. Second, through the factor analysis, those 11 variables are compressed to 3 orthogonal factors. Third, useing these 3 factors as input variables, a SOFM is set up. When the neural network is trained appropriately, it classifies the data sets. The results show that 31 provinces or autonomous regions are classified into 3 groups, which is consistent with the results of the questionnaire survey in Wuyishan scenic spot. The results also indicate that SOFM is an alternative effective quantitative approach in clustering of tourist market .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:北京大学
  • 主编:赵光达
  • 地址:北京海淀区海淀路52号
  • 邮编:100871
  • 邮箱:xbna@pku.edu.cn
  • 电话:010-62756706
  • 国际标准刊号:ISSN:0479-8023
  • 国内统一刊号:ISSN:11-2442/N
  • 邮发代号:2-89
  • 获奖情况:
  • 1997年第二届全国优秀科技期刊评比一等奖,1999年教育部“优秀自然科学学报一等奖”,1999年获首届国家期刊奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18270