位置:成果数据库 > 期刊 > 期刊详情页
一种新的智能流场特征检测与识别方法
  • ISSN号:1007-130X
  • 期刊名称:《计算机工程与科学》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科技大学计算机学院,湖南长沙410073
  • 相关基金:国家973计划资助项目(2002CB312105);国家863计划资助项目(2006AA01Z309)
中文摘要:

传统的基于拓扑分析方法的特征可视化系统的扩展性、通用性和交互性较差。本文分析了流场的特征,在此基础上提出了一种基于BP神经网络的可选择智能流场特征提取方法,设计了一种三层BP神经网络结构,用户可以对感兴趣的新特征进行选取并进行训练和提取,而无须修改程序。该方法利用神经网络较强的非线性映射能力,提高了系统的扩展性、通用性和交互性。基于上述方法,设计并实现了一个流场可视化原型系统。实验表明,该方法对流场任意特征具有高识别率和较低的误警率、漏报率。

英文摘要:

Feature-based visualization of flow is an important field of scientific visualization. The traditional visualization system based on topology analysis of the flow field does not have scalability, generality and good interaction. Based on the flow feature analysis, this paper presents a selective and intelligent flow feature extraction method. We design a three-lay- ered BP neural network, and the user can select the new feature region they are interested iru Using the strong non-linear ability of the neural network, we are successful in improving the system's scalability, generality and interaction. Finally, we introduce a demonstration system based on the above methods, and the test shows that this method has a high recognition rate and a low error-calling rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与科学》
  • 中国科技核心期刊
  • 主管单位:国防科学技术大学
  • 主办单位:国防科学技术大大学计算机学院
  • 主编:王志英
  • 地址:湖南长沙德雅路109号
  • 邮编:410073
  • 邮箱:jsjgcykx@163.net
  • 电话:0731-84576405
  • 国际标准刊号:ISSN:1007-130X
  • 国内统一刊号:ISSN:43-1258/TP
  • 邮发代号:42-153
  • 获奖情况:
  • 湖南省优秀期刊,首届国防科技期刊优秀期刊,《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:16422