位置:成果数据库 > 期刊 > 期刊详情页
张量局部判别投影的人脸识别
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410075
  • 相关基金:国家自然科学基金(No.60776834);湖南省自然科学基金(No.055JJ30121)
中文摘要:

经典的向量子空间学习算法是以数据流形的向量表示进行计算的,但是在现实世界中数据流形从本质上而言是以张量的形式存在,因此基于张量子空间的学习算法能够更好地揭示流形内在的几何结构.本文提出了一种新的张量子空间的学习算法:张量局部判别投影.首先构建类内和类间图,然后保持流形的局部结构并且利用数据的判别信息,推导出算法的计算公式,最后通过迭代计算广义特征向量,解得最优张量子空间.在标准人脸数据库上的实验表明该算法有效.

英文摘要:

Classical vector subspace learning algorithms work with vectorized representations of data manifold, while data manifold represented in the reality is intrinsically a tensor, so the algorithms based on tensor subspace leamig can perfectly detect the intrinsic geometrical structure of the data manifold. In this paper, a novel tensor subspace learning algorithm, tensor locality discriminant projection, is proposed. To implement the algorithm, construct within-class and between-class graph at first, then preserve local structure of the data manifold and utilize its discriminant information to deduce the formula of the algorithm, finally work out optimal tensor subspace by iteratively computing the generalized eigenvectors. The experiments on the standard face database demonstrate the effectiveness of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611