位置:成果数据库 > 期刊 > 期刊详情页
半监督k近邻分类方法
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南文理学院电气与信息工程学院,常德415000
  • 相关基金:国家自然科学基金项目(60776834);湖南省教育厅优秀青年项目(10B074)
中文摘要:

加权KNN(k-nearest neighbor)方法,仅利用了k个最近邻训练样本所提供的类别信息,而没考虑测试样本的贡献,因而常会导致一些误判。针对这个缺陷,提出了半监督KNN分类方法。该方法对序列样本和非序列样本,均能够较好地执行分类。在分类决策时,还考虑了c个最近邻测试样本的贡献,从而提高了分类的正确性。在Cohn-Kanade人脸库上,序列图像的识别率提高了5.95%,在CMU-AMP人脸库上,非序列图像的识别率提高了7.98%。实验结果表明,该方法执行效率高,分类效果好。

英文摘要:

The category information of the k-nearest neighbor labeled samples is used, but the contribution of the test sam- ples is omitted in the weighted k-nearest neighbor method, which often lead to misclassifieations. Aimed at the problem, a semi-supervised k-nearest neighbor method is proposed in this paper. The method can classify sequential samples and non-sequential samples better than the k-nearest neighbor method. In the decision process of classification, the information of c-nearest neighbor samples in the test set is used. So, classification accuracy is improved. The recognition accuracy of the method is 5.95% higher for sequential images in Cohn-Kanade face database, and 7. 89% higher for non-sequential images in Cohn-Kanade face database than it of weighted k-nearest neighbor method. The experiment shows that the method performs fast and has high classification accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0