文本推理在自然语言处理的应用中占有极为重要的位置,本文介绍了基于知网的一种推理方法,该方法以语义网络的形式表示知网中的知识,利用“标记传递”实现推理。其特.最是引入构造一融合模型的思想,动态生成知识结构,有引导地在文本词汇间建立推理路径。利用16种推理类的实例对其进行测试,结果表明在有足够上下文的条件下,该方法能够得出较为理想的推理,并且代价不高。
Text inference is central to natural language applications. This paper presents an inference method based on HowNet, which organizes knowledge with semantic net and infers with marker passing. The method introduces construction-integration model, generates knowledge structure dynamically and builds paths between text words with guide. Examples of 16 inference classes are used to test it. The results show that ideal inferences can be extracted with low cost if enough contexts are given.