位置:成果数据库 > 期刊 > 期刊详情页
基于决策树和面向对象的作物分布信息遥感提取
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:S127[农业科学—农业基础科学]
  • 作者机构:[1]北京农业信息技术研究中心,北京100097, [2]北京智慧农业物联网产业技术创新战略联盟,北京100097, [3]四川省第三测绘工程院,成都610500
  • 相关基金:国家自然科学基金项目(41171281)
中文摘要:

利用我国2012年4—11月覆盖主要农作物全生育期的23幅中分辨率HJ-1A/1B卫星时序影像,采用决策树和面向对象相结合的分类方法提取黑龙江省双河农场主要农作物分布信息,并与传统决策树分类方法进行对比。通过影像预处理构建时序HJ星影像集,先利用面向对象方法提取道路,为作物提取排除田间道路及附属地物干扰;再结合作物物候历分析不同地物光谱和时序特征,筛选出7个特征指数和14个敏感时相,建立决策树分类模型,提取出玉米和水稻。研究表明,多特征指数辅助作物分类十分有效,尤其是归一化水指数NDWI对水稻提取非常有效;较之传统决策树分类,决策树和面向对象相结合的分类方法能有效剔除田间道路及附属林带沟渠对作物分类的干扰,总体分类精度从89.22%提升至95.18%,该方法可为其他地区利用中分辨率遥感影像低成本高精度提取作物分布信息提供借鉴。

英文摘要:

Accurately acquiring crops distribution information is of great significance for agricultural production management and yield estimation, but the roads, forest belts and ditches in the farmland seriously affect the accuracy of crops classification and extraction. Chinese small satellite constellation of small satellites for environment and disaster monitoring and forecasting (HJ- 1A/1 B satellite) is a good data source for crops classification, because it is free for researchers and has a higher spatial resolution of 30 m and a higher time resolution of two days. In this paper, Shuanghe farm in Heilongjiang province of China was the research area, 23 time-series HJ - 1A/1B images which cover the growth period of the major crops from April 3th to November 9th, 2012, were used to monitor the roads and forest belts in the farm, extract spatial distribution of the major crops based on decision tree and object-oriented method, and the classification result was compared to traditional decision tree. The time-series image set and the time-series characteristic index set such as NDVI, DVI, RVI, EVI and NDWI were built after the original image data pretreatment. Firstly, the road in the farm was extracted with object-oriented classification based on elements of length-width ratio and other parameters, then the time-series set was masked by the road in order to rule out the interference of roads, forest belts and ditches for the extraction of crops information. Secondly, seven effective characteristic parameters and 14 sensitive time phases were chosen by using the object spectrum, time phase and time series characteristics. The thresholds of characteristic parameters were determined, and the decision tree classification model of major crops was established. Finally, the major crops in Shuanghe farm such as corn and rice were extracted. The result showed that using many characteristic indices to classify crops was very effective, and especially NDWI was very helpful for rice extraction. The method of decision tree and

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884