When a Λ hyperon is embedded in a nucleus it can form a hypernucleus. The lifetime and its mass dependence of stable hypernuclei provide information about the ΛN interaction in the nuclear medium. This work will introduce the Jefferson Lab experiment(E02-017), which aims to study the lifetime of the heavy hypernuclei using a specially developed fission fragment detection technique: a multi-wire proportional chamber operating under low gas pressure(LPMWPC). The trajectory of the detected fragment is reconstructed and used to find the fission point on the target foil, the position resolution is less than 1 mm, which meets the original design, the separation of target materials and events mixture percentage in different regions are verified by Monte Carlo simulation.
When a A hyperon is embedded in a nucleus it can form a hypernucleus. The lifetime and its mass dependence of stable hypernuclei provide information about the AN interaction in the nuclear medium. This work will introduce the Jefferson Lab experiment (E02-017), which aims to study the lifetime of the heavy hypernuclei using a specially developed fission fragment detection technique: a multi-wire proportional chamber operating under low gas pressure (LPMWPC). The trajectory of the detected fragment is reconstructed and used to find the fission point on the target foil, the position resolution is less than I ram, which meets the original design, the separation of target materials and events mixture percentage in different regions are verified by Monte Carlo simulation.