为了研究管道结构强度设计中确定分安全系数问题,提出一种确定分安全系数的新计算模型。在已知极限状态方程时,如果是正态分布随机变量,可以采用一次二阶矩法计算出相关的设计点,如果随机变量中有非正态分布随机变量,则需要采用等效正态变化的一次二阶矩法计算,然后确定出参数相应的分安全系数。对于更为复杂而无法确定极限状态方程情况下,则可以首先利用蒙特卡洛有限元方法和概率统计方法计算,确定出结果响应的随机分布性质,然后再根据抗力和载荷效应极限状态方程确定分安全系数。为验证模型的有效性,文中给出了算例,其中对一个管道的分安全系数的计算结果,与前人用非线性有限元法计算的结果一致。
To determine the partial safty factors for strength design of pipeline structures, a new cal- culation model for determining the partial safety factor is proposed. If the limit statement equation is known and random variables are in the naormal distribution, the first order and second moment (FOSM) can be used to calculate the relevant design. If a set of random variables contains non-nor- mally distributed random variables, equivalent normal transform could be done by useing a second- order moment method to determine the parameters of appropriate safety factors. For the complex con- dition in which it is unable to determine the limit statement equation, the Monte Carlo finite element method and probabilistics could be applied to determie the randomly distributed nature of response parameters, then partial safety factors be calculated based on the resistance and load limit statement equation. To verify the validity of the proposed model, practical examples are given. For a pipe structure, the partial safety factors calculated is in good agreement with the conclusion using nonlin-ear finite element analysis.