以电镀Ni颗粒为催化剂、丙烯(c3H6)为碳源、H2-为载气、N2为稀释气体,采用催化化学气相沉积(ccVD)法,在炭纤维表面原位牛长碳纳米管/碳纳米纤维(CNT/cNF),并对炭纤维进行表面改性。利用SEM和TEM对生长的CNT/CNF进行表征。利用Raman光谱表征未经处理的炭纤维和由CCVD生长的CNT,CNF炭纤维,对比改性前后的纤维表面结构。结果表明:表面改性可减少纤维表层的无序碳和非晶碳的数量,提高表层的石墨化程度。基于实验分析,提出了1种CCVD生长CNT/CNF的“断裂一吸附一扩散一沉积”机理模型。
Using nickel particles as catalysts, C3H6, H2, N2 as carbon source, carrier gas and diluent gas, respectively, the carbon nano-tube/carbon nano-fiber (CNT/CNF) were self-grown on the surface of carbon fibers (CFs) by the method of catalytic chemical vapor deposition (CCVD) to make surface modification of CF. The structures of CNT/CNF were observed by SEM and TEM. Surface structure of untreated and treated carbon fiber (CF) were observed by Raman spectra. The results show that the surface modification can decrease the amount of disordered carbon and amorphous carbon, improve the surface graphitization of carbon fiber. A new "Fracture-Adsorption-Diffusion-Deposition" mechanism model for CCVD growth of CNT/CNF is suggested based on these analyses.