该文主要讨论一类多调和方程,通过研究此方程对应的线性化问题本征谱,得到了方程的全局分支结果.所讨论的方法主要依赖于P.M.Fitzpatrick,J.Pejsachowicz和P.J.Rabier C^2 Fredholm算子的度理论思想.
This paper considers a class of nonlinear polyharmonic eigenvalue problem, describes the behavior of the branches of solutions emanating from an eigenvalue of odd multi- plicity below the essential spectrum of the linearized problem. The discussion is based on the degree theory for C^2 proper Fredholm maps developed by P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier.