设G是一个w-balanced且满足Hs(G)≤ω的仿拓扑群,那么对每一包含单位元e的开邻域U,G上存在一个左不变的伪拟度量r满足以下条件:1){x∈G:r(e,x)≤1}íU;2){x∈G:r(e,x)(28)0}是G中闭的不变子群;3)G中任意x和y满足r(e,xy)≤r(e,x)(10)r(e,y).
In this paper, we mainly prove that: Let G be an w-balanced paratopological group in which Hs(G) ≤ω. Then, for every open neighbourhood U of the neutral element e in G, there exists a left-invariant pseudoquasimetric r on G that satisfies the following conditions: 1){x ∈G: r(e, x) ≤1} íU; 2){x ∈G: r(e, x)(28)0} is a closed invariant subgroup of G; 3) for any x and y in G, r(e, xy) ≤p(e, x)(10)r(e, y).