本文通过集值映射扩张刻画了k-半层空间和k-MCM空间.证明了以下结果:对于空间X下列论断等价:(1)X是k-半层空间;(2)对每个度量空间Y,存在保序算子Φ使得对每个集值映射φ:X→F(Y)都对应下半连续和k-上半连续集值映射Φ(φ):X→F(Y),使得Φ(φ)(x)在每个点x∈Uφ有界并且φ Φ(φ),这里F(Y)是Y的所有非空闭集,Uφ={x∈X:φ在点x局部有界}.
In this paper,we give some characterizations of k-semistratifiable and k-MCM by expansions of setvalued mappings.It is shown that for a space X,the following statements are equivalent:(1)Xis k-semistratifiable;(2)for every metric space Y,there exists an order-preserving operatorΦthat assigns each set-valued mappingφ:X →F(Y)(F(Y)is the set of all nonempty closed set of Y),a l.s.c.and k-u.s.c.set-valued mappingΦ(φ):X →F(Y)such thatΦ(φ)(x)is bounded for each x∈Uφ,where Uφ= {x∈X:φis locally bounded at x},and thatφ Φ(φ).