位置:成果数据库 > 期刊 > 期刊详情页
一种基于约束的中垂面相似度准则
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京航空航天大学计算机科学与工程系,南京210016
  • 相关基金:基金项目:国家自然科学基金项目(60875030)
中文摘要:

在数据挖掘和机器学习的基于距离的各种技术中,例如基于距离的聚类和基于距离的分类,如何度量数据间的相似性已经成为一项基础任务.对于某一具体问题,采用合适的相似性度量,会使问题得到更有效的解决.越来越多的研究表明,通过对成对约束(正约束和负约束)的充分利用,从而得到与问题相匹配的相似性度量,能够大幅度地提升算法性能.目前基于约束的相似性度量研究主要是基于约束的距离度量学习,通过对约束信息的利用,学习一个距离度量矩阵,然后再进行分类或者聚类.通过对成对约束尤其是负约束的挖掘,提出一种基于成对约束的相似性度量准则,然后将此准则应用于聚类和分类任务中,分别提出聚类和分类算法,最后在大量标准数据集上将这些算法的性能与目前流行的算法进行实验比较,并据此得出了一些经验性的启示.

英文摘要:

Measuring the similarity between data objects is one of the primary tasks for distance-based techniques in data mining and machine learning, e. g. , distance-based clustering or classification. For a certain problem, using proper similarity measurement will make it easier to be solved. Recently, more and more researches have shown that pairwise constraints can help to obtain a good similarity measurement for certain problem with significantly improved performances. Most existing works on similarity measurement with pairwise constraints are on distance metric learning, which use pairwise constraints to learn a distance matrix for subsequent classification or clustering. In this paper, inspired by the hyperplance used in nearest neighbor and support vector machine classifiers, we propose a new similarity measurement criterion called mid-perpendicular hyperplane similarity (MPHS) which can effectively learn from pairwise constraints, especially cannot- Then we apply it for clustering and classification tasks. Finally, we validate the elf proposed method by comparing it with several state-of-the-art algorithms th experiments on a number of benchmark datasets. link constraints. ectiveness of our rough extensive experiments on a number of benchmark datasets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349