位置:成果数据库 > 期刊 > 期刊详情页
半监督典型相关分析算法
  • 期刊名称:彭岩, 张道强, 半监督典型相关分析算法, 软件学报, 19(11):2822-2832, 2008
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京航空航天大学计算机科学与工程系,江苏南京210016
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant Nos.60505004. 60875030 (国家自然科学基金); the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006521 (江苏省自然科学基金)
  • 相关项目:半监督聚类及其应用研究
中文摘要:

在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi—CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息来提高分类性能.

英文摘要:

In this paper, a semi-supervised canonical correlation analysis algorithm called Semi-CCA is developed, which uses supervision information in the form of pair-wise constraints in canonical correlation analysis (CCA). In this setting, besides abundant unlabeled data examples, the domain knowledge in the form of pair-wise constraints which specify whether a pair of data examples belongs to the same class (must-link constraints) or not (cannot-link constraints) is also available. Meanwhile, the relative importance of must-link constraints and cannot-link constraints is validated. Experimental results on the artificial dataset, multiple feature database and facial database including Yale and AR show that the proposed Semi-CCA can effectively enhance the classifier performance by using only a small amount of supervision information.

同期刊论文项目
期刊论文 19 会议论文 10 获奖 1
同项目期刊论文