位置:成果数据库 > 期刊 > 期刊详情页
纹理图像分类的置信规则库推理方法
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:福州大学数学与计算机科学学院,福州350116
  • 相关基金:国家自然科学基金(No.71501047,No.61773123);福建省自然科学基金(N0.2015J01248);福州大学科技发展基金(No.2014-XQ-26)资助
中文摘要:

针对传统纹理图像分类算法识别率不高的问题,引入置信规则库推理方法而提出一种纹理图像分类策略.目前纹理图像分类研究常局限于纹理特征提取算法的改进,而忽视了另一个决定分类效果的关键,即分类器设计.该文采用置信规则库推理方法,在现有纹理特征提取算法基础上重新设计纹理图像分类器.根据角度径向变换和灰度共生矩阵算法提取图像纹理特征,采用主成分分析方法减少角度径向变换特征的维数,以避免产生置信规则库“组合爆炸”的问题.最后用置信规则库推理方法将纹理特征信息转换成类别置信度信息,得到最终的分类结果.实验中将置信规则库推理方法分别与相似性距离度量法和支持向量机法进行对比,结果表明所提出的方法在一定程度上提高了纹理图像分类准确率.

英文摘要:

To improve precision of traditional texture image classify algorithm, a new texture image classification method based on belief rule-base inference methodology using evidential reasoning approach(RIMER) is proposed. Researches on texture image classifi- cation generally consider improving texture feature extraction, and the design of classifier that is crucial to classification precision is largely ignored. In this paper, a rule-base inference method using an evidential reasoning approach is proposed. The classifier is redesigned based on the current methods of texture feature extraction. Algorithms of angular-radialtransform and gray-level con-occurrence matrix are used to extract texture image feature. Principle component analysis is carried out to solve the problem that the size of a belief rule base(BRB) classifier is controlled within a feasible range. The approach of rule-base inference method with evidential reasoning transforms the texture features into classified belief degree information. Practicability and effectiveness of the proposed approach is validated in a case study.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747