化学突触在神经科学的认知功能中有重要地位,而环路结构对生物神经网络的自持续震荡行为也至关重要.针对不同的化学突触模型,定量及定性分析了单向纯环神经网络的动力学性质.重点对Tsodyks-Uziel-Markram(TUM)化学突触模型作了分析,得到3种环长情况的周期解,并在数值模拟中得到有力支持.解析或定性得到了不同化学突触的神经环路动力学性质.这些结果可以作为进一步研究神经网络自持续震荡的理论基础.
Chemical coupled synapses are important to cognitive functions in Neuroscience,and loops are important to self-sustained oscillations in biological neural networks. The dynamics of neural loops based on some different synaptic models( especially on Tsodyks-Uziel-Markram model)were analysed. The solutions of periodic oscillation are solved,and have been verified by numerical simulations. The dynamic properties of neural loops coupled by other synaptic models are analysed as well. The quantitative or qualitative results will promote to understand the functions of loops in neural networks.