位置:成果数据库 > 期刊 > 期刊详情页
双目视觉在粒子图像测量中的研究
  • ISSN号:1001-506X
  • 期刊名称:《系统工程与电子技术》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连理工大学海岸和近海工程国家重点实验室,大连116024
  • 相关基金:国家自然科学基金项目(50379002)
中文摘要:

研究了动态粒子图像追踪过程中的误匹配问题,提出了基于自组织映射(SOM)神经网络的粒子图像匹配算法。该方法使用SOM神经网络将归一化相关算法与最近邻判断准则结合在一起。首先使用互相关算法估计初始匹配位置;然后根据不同相关度的位置信息构建SOM神经网络并使用近邻支持判断准则选择最佳匹配位置。经SOM神经网络改进的粒子图像匹配算法大大减少了伪矢量的数量,增强了实际的处理能力;最后,使用人工合成的粒子图以及真实流场中的粒子图像进行了算法验证及误差分析。结果表明,该算法在分析精度方面有很大的提高并且具有很强的鲁棒性。

英文摘要:

In order to reduce matching error, in this paper, a new matching method for particle images is proposed based on the SOM neural network, which combines the nearest-neighbor matching algorithm with the cross-correlation algorithm. Firstly, the cross-correlation approach is used to evaluate the initial matching position. Secondly, the processing results of the correlation are used to build the neural network. Thirdly, nearest-neighbor matching algorithm is adopted to select the best matching points. The modified method can reduce the number of false vectors and improve the practical value. At last, the synthetic particle images and real particle images are tested and the errors are analyzed. The experimental results show that the proposed method is a robust algorithm for measuring the movement of particles and the vector fields can be obtained with high precision.

同期刊论文项目
期刊论文 20 会议论文 4
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341