单个脉搏的混乱被学习为一机能上地分级的材料矩形的板。借助于全球不安方法,为一条 Silnikov 类型 homoclinic 轨道的存在的明确的条件为这个系统被获得,它建议混乱是可能的发生。然后,数字模拟被给测试分析预言。并且当混乱运动发生时,从我们的分析,在另一二维的增补 subspace 在二维的 subspace 和混乱有一个伪时期运动。
Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace.