位置:成果数据库 > 期刊 > 期刊详情页
APPLICATION OF WRF/UCM IN THE SIMULATION OF A HEAT WAVE EVENT AND URBAN HEAT ISLAND AROUND GUANGZHOU
  • ISSN号:1006-8775
  • 期刊名称:《热带气象学报:英文版》
  • 时间:0
  • 分类:P404[天文地球—大气科学及气象学] X16[环境科学与工程—环境科学]
  • 作者机构:Guangzhou Institute of Tropical and Marine Meteorology,CMA, State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences, School of Environmental Science and Engineering,Sun Yat-sen University
  • 相关基金:Natural Science Foundation of China(40775068); Specialized Projects of Scientific Research for Public Welfare Industry(Meteorology); Open Projects of Key National Laboratories for Disasters-causing Weather(GYHY200706014;GYHY200906026); Science Foundation of China(2009LASW-B03); Foundation for Scientific Research on Tropical and Marine Meteorology
中文摘要:

This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.

英文摘要:

This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《热带气象学报:英文版》
  • 主管单位:广东省气象局
  • 主办单位:中国气象局广州热带海洋气象研究所
  • 主编:吴尚森
  • 地址:广州市福今路6号
  • 邮编:510220
  • 邮箱:rqxb@chinajournal.net.cn
  • 电话:020-39456441
  • 国际标准刊号:ISSN:1006-8775
  • 国内统一刊号:ISSN:44-1409/P
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库)
  • 被引量:113