位置:成果数据库 > 期刊 > 期刊详情页
基于模糊神经网络的火灾识别算法
  • ISSN号:1006-9348
  • 期刊名称:计算机仿真
  • 时间:0
  • 页码:-
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京林业大学机械电子工程学院,江苏南京210037
  • 相关基金:国家自然科学基金青年基金项目(31200496)
  • 相关项目:基于视觉感知机理的林火视频识别模型研究
作者: 赵亚琴|
中文摘要:

火灾自动识别能够及时准确预报火情。在森林大空间的环境中,由于火灾信号具有非线性和不确定性,将采集的探测信号做简单的分析与比较,误报率比较高。如何融合几个传感器的信号进行有效地火灾识别是一个难点。为提高预测的准确性,针对传统的森林火情预测系统误报率高的缺点,提出一种基于模糊神经网络的火灾识别算法。首先,将模糊控制和神经网络以串联的方式结合,将采集的传感器信号进行处理后送入三层前馈BP网络进行处理,输出明火概率、阴燃火概率、无火概率,然后,将它们作为模糊控制系统的输入,模糊化后进行模糊推理,最后去模糊化得出火灾概率大小。并利用MATLAB工具箱对构建的算法模型进行仿真分析,仿真结果表明,本文的方法能够有效地融合多个火灾探测传感器的信号,快速而准确的判断出火情的大小,提高火灾识别的准确率,减少误报率。

英文摘要:

Fire automatic recognition can efficiently and accurately forecast fires. Because forest scene is a large space field, fire detection signals are non - liner and uncertain. False alarm rate of fire recognition increases if detec- tion signals are simply analyzed and compared. Therefore, the difficulty is how to fuse the signals of several senors in order to detect fires. Considering the high false alarm rate of traditional forest fire forecast systems, this paper presen- ted a forest fire recognition method based on Fuzzy Nerual Network. It combined fuzzy control with neural network in a serial way for fire recognization. Firstly, the signals collected by sensor were put into the three - layer feed - for- ward BP network, which then recognized and output the fire probabilities, smoldering fire probabilities, and no_fire probabilities. Afterwards, the three probabilities were transferred into fuzzy control system, and processed by fuzzy membership function. After fuzzy reasoning we can obtain the fire probability. Finally, MATLAB toolbox was used to simulate and analyze the proposed model. The results show that the system can effectively fuse the signals of several senors, judge the situation of the fire more quickly and accurately, and reduce the rate of false alarm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机仿真》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科技科工集团公司
  • 主办单位:中国航天科工集团公司第十七研究所
  • 主编:吴连伟
  • 地址:北京市海淀区阜成路14号
  • 邮编:100048
  • 邮箱:jsjfz@compusimu;kwcoltd@public.bta.net.cn
  • 电话:010-59475138
  • 国际标准刊号:ISSN:1006-9348
  • 国内统一刊号:ISSN:11-3724/TP
  • 邮发代号:82-773
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:38378