位置:成果数据库 > 期刊 > 期刊详情页
混合高斯分布的变分贝叶斯学习参数估计
  • ISSN号:1006-2467
  • 期刊名称:上海交通大学学报
  • 时间:2013.7.28
  • 页码:1119-1125
  • 分类:TN911.23[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]哈尔滨工程大学自动化学院,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61102107); 中国博士后基金项目(20100480979); 黑龙江省博士后基金项目(LBH-Z10193)
  • 相关项目:混合Alpha稳定分布非高斯噪声模型及基于变分贝叶斯学习的参数估计方法
中文摘要:

针对常用于非高斯信号或系统建模的包含隐变量的混合高斯分布模型,提出利用一种变分贝叶斯学习算法进行模型的参数估计.该方法采用一个形式较为简单的自由分布,通过不断最大化边缘似然函数的下界,迭代地更新变分参数,直至近似分布足够逼近参数真实的后验分布,从而实现混合高斯分布的参数估计.文中推导了该方法对混合高斯模型参数学习过程.实验表明,变分贝叶斯学习可以有效实现高斯混合模型的多参数估计,相比采样方法更有工程应用前景.

英文摘要:

Non-Gaussian signals or systems are usually modeled by mixture of Gaussians(MoG) models containing hidden variables.A variational Bayesian learning algorithm was suggested to infer the parameters of MoG.The algorithm estimateed the parameters of MoG by iteratively maximizing the lower bound of the marginal likelihood and updating the variational parameters until the free-form distribution was sufficiently close to the true posterior.The detailed learning of variational Bayes for MoG was derived and explained.The experiments show that this method can estimate the parameters of MoG favorably with sampling method from the engineering view.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903