有效的交通需求预测是电梯交通模式识别的一个重要前提,而传统的交通需求预测建模往往依赖于交通需求的分布.本文定义了交通需求的显著性评价指标xevnα及φ0-显著,并基于上述指标给出了关于交通需求分布显著水平的一种评价方式;在此基础上,研究了在不服从Poisson分布且交通需求显著时的一种交通需求预测方法.仿真实验表明了该方法的有效性.
The efficient forecasting of the elevator traffic demand is essential to the pattern recognition of the elevator traffic. The classical traffic demand forecasting generally depends on the specific traffic demand distribution. We define the significance-evaluation indices xevna and φ0, and present the distribution of the significance-evaluation mode of elevator traffic in terms of those evaluation indices. On that basis, an elevator traffic demand forecasting method under strong significance and non-Poisson distribution is developed. Simulation experiments show the validity of the proposed method.