研究了NH4CI等轴晶在过热NH4C1-70wt%H2O溶液落管内熔化中的形貌演化过程,并分析了溶液过热度及等轴晶初始尺寸对其下落速度和熔化速率的影响规律和机理.结果表明:等轴晶在过热溶液中下落时,若不发生旋转,其形貌由准轴对称形貌演变成非轴对称准三角形貌;若发生旋转,则有助于保持其准轴对称形貌.通过分析不同条件下等轴晶下落时的阻力系数,认为提高溶液过热度可获得更为光顺的等轴晶外形,增大其下落速度.等轴晶初始尺寸越大,其形貌复杂性提升及下落速度增大,会导致熔化速率加快.在等轴晶下落熔化的过程中,逐渐减小的下落速度减弱了界面前沿对流传质条件,使得单个等轴晶的熔化速率基本保持恒定.
The morphology evolution of NH4C1 equiaxed crystal settling in a falling tube filling with its superheated aqueous solution is studied. The effects of superheating and initial crystal size on settling rate and melting velocity are analyzed. The results show that for a non-spinning equiaxed crystal, it will transform from a "quasi-symmetrical" morphology to "quasi-delta" morphology, and for a spinning equiaxed crystal, it is more likely to sustain its initial "quasi-symmetrical" morphology. By analyzing the drag coefficients of equiaxed crystals settling in the solution at different superheating degrees, it is found that higher superheating leads to a smoother shape of the equiaxed crystal, thus increasing its settling rate. For a large equiaxed crystal, higher complexity in shape and increase in settling velocity will lead to a higher melting velocity. In the settling process of crystal in superheated melt, the solute transport condition on the melting interface is weakened by the gradually reducing the setting velocity, resulting in a relatively steady melting velocity for a certain equiaxed crystal.