In the context of global warming,apparent decdal-interdecdal variabilities can be detected in summer precipitation in southern China.Especially around the 1990 s,precipitation in South China experienced a phase transition from a deficiency regime to an abundance regime in the early 1990 s,while the Yangtze River Valley witnessed a phase shift of summer precipitation from abundance to deficiency in the late 1990 s.Pertinent analyses reveal a close relationship between such decadal precipitation shifts and moisture budgets,which is mainly modulated by the meridional component.This relationship can be attributed to large-scale moisture transport anomalies.Further,the HYSPLIT model is utilized to quantitatively evaluate relative moisture contributions from diverse sources during different regimes.It can be found that during the period with abundant precipitation in South China,the moisture contribution from the source of Indochina Peninsula-South China Sea increased significantly,while during the deficient precipitation regime in the Yangtze River Valley,moisture from local source,western Pacific and Indochina Peninsula-South China Sea contributed less to precipitation.It means some new features of relative moisture contributions from diverse sources to precipitation anomaly in southern China took shape after 1990 s.
In the context of global warming, apparent decdal-interdecdal variabilities can be detected in summer precipitation in southern China. Especially around the 1990s, precipitation in South China experienced a phase transition from a deficiency regime to an abundance regime in the early 1990s, while the Yangtze River Valley witnessed a phase shift of summer precipitation from abundance to deficiency in the late 1990s. Pertinent analyses reveal a close relationship between such decadal precipitation shifts and moisture budgets, which is mainly modulated by the meridional component. This relationship can be attributed to large-scale moisture transport anomalies. Further, the HYSPLIT model is utilized to quantitatively evaluate relative moisture contributions from diverse sources during different regimes. It can be found that during the period with abundant precipitation in South China, the moisture contribution from the source of Indochina Peninsula-South China Sea increased significantly, while during the deficient precipitation regime in the Yangtze River Valley, moisture from local source, western Pacific and Indochina Peninsula-South China Sea contributed less to precipitation. It means some new features of relative moisture contributions from diverse sources to precipitation anomaly in southern China took shape after 1990s.