过硬的横向稳定杆会限制车辆的越野能力,因此某些车型为了保障越野能力而选用较软的横向稳定杆,便导致了越野车侧倾刚度不足的问题。针对这一问题设计了一套可取代横向稳定杆的车身稳定系统,用于在不影响车辆越野性能的同时增加车辆的侧倾刚度。通过建立整车及液压系统动力学模型进行数值运算仿真,以求得能和整车匹配的车身稳定系统的关键参数。然后根据该车的底盘结构对系统进行结构设计,并开发出了原型样机进行装车试验。通过对原装越野车和改装越野车进行悬架性能试验、蛇行试验和平顺性试验,并对结果作对比分析,验证了车身稳定系统可以大幅度提高车辆动态侧倾刚度,改善其操纵稳定性且并不影响平顺性。
Stiffer anti-roll bars limit the off-road performance of vehicles, so to ensure the off-road capability, some vehicles are installed with soft anti-roll bars which are lack of the roll-plane stiffness. A body stabilizer system is designed based on an off-road vehicle to replace anti-roll bars to improve roll stiffness and have no effect on the off-road performance. A hydraulic system model and a full-car model are employed to conduct numerical study to obtain the key parameters for the body stabilizer system to match the vehicle. Furthermore, based on the obtained parameters, a protoyphy of the system is then designed and installed to the vehicle chassis. A set of tests are performed to evaluate the effects of the body stabilizer system on suspension performance, vehicle handling and ride performance. Overall, the experimental investigation indicated that the body stabilizer system can significantly improve the vehicle dynamic roll stability and handling performance without compensating ride performance.