位置:成果数据库 > 期刊 > 期刊详情页
基于动态模糊神经网络的结构主动控制仿真分析
  • 期刊名称:地 震 工 程 与 工 程 振 动
  • 时间:0
  • 页码:132-138
  • 语言:中文
  • 分类:TU311.3[建筑科学—结构工程] P315.966[天文地球—地震学;天文地球—固体地球物理学;天文地球—地球物理学]
  • 作者机构:[1]北京工业大学建筑工程学院,北京100124
  • 相关基金:国家自然科学基金面上项目(50878011); 国家科技支撑计划课题(2006BAJ03B06)
  • 相关项目:高层建筑结构自适应模糊控制算法与试验研究
中文摘要:

在模糊控制中,如何更加合理地生成控制规则,是其应用的一个重要问题。本文采用动态模糊神经网络(DFNN)算法,并借助于最优控制算法的样本数据,实现建筑结构振动控制中的模糊规则自动提取。首先,介绍了DFNN的结构和算法;其次,采用DFNN算法设计了二输入单输出及四输入单输出两种模糊控制器,对顶层设置AMD控制装置的五层钢框架模型结构进行模糊控制仿真分析。仿真结果表明,两种模糊控制器对顶层位移和加速度反应峰值的控制效果达到50%和30%以上,对地震输入和结构参数的变化均具有较好的鲁棒性;相比二输入模糊控制器,四输入模糊控制器的控制效果更好。本文研究为地震作用下建筑结构AMD模糊控制提供了新的思路和方法。

英文摘要:

How to generate fuzzy rules for structural vibration control is a key issue.In this paper,a dynamic fuzzy neural network(DFNN) algorithm is adopted to extract fuzzy rules based on the example data obtained from the performance of the system under optimal control algorithm.First,the structure and algorithm of DFNN is introduced.Then,two fuzzy controllers are developed based on DFNN algorithm,one is two-input and single-output while the other is four-input and single-output.Numerical simulation is carried out for a five-storey frame model with AMD installed on the top floor.The simulation results show that both controllers are very effective in reducing the responses of the model structure under seismic excitation and the reduction of more than 50% and 30% in relative displacement and acceleration can be achieved respectively.Moreover,the robustness of the fuzzy controllers is demonstrated through the change of seismic input and structural parameters.The performance of the four-input controller is better than that of the two-input controller,which can provide a new idea and method for structural AMD fuzzy control.

同期刊论文项目
同项目期刊论文