位置:成果数据库 > 期刊 > 期刊详情页
基于样块和粒子群算法的图像修复
  • ISSN号:1000-0984
  • 期刊名称:《数学的实践与认识》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中北大学理学院,山西太原030051
  • 相关基金:国家自然科学基金(61275120)
中文摘要:

图像修复是近年来图像视觉研究当中的一个热点.Criminisi算法是一种比较常用的方法.为了消除原算法当中置信度和数据项相互影响的问题,并且考虑到平滑项对图像的锐化作用,对优先权的计算重新进行了调整.而将粒子群算法运用到最佳匹配块的搜索过程当中,避免了全局搜索带来的大工作量和不准确性,提高了算法的修复效率和准确性.经过仿真实验证明,改进后的算法不仅在PSNR值上有所提高,修复效果也更符合人们的视觉需求.

英文摘要:

In recent years, image inpainting is one of the hot spots in the image vision research. Criminisi algorithm is a widely used algorithm. In order to eliminate the mutual influence during the confidence level and date terms, and considering the sharpening effect of smoothing item on images, we restructure the calculation of the priority. The particle swarm optimization algorithm is applied to the search process of the best matching patch, which avoids the heavy workload and inaccuracy caused by the global search, and improves the efficiency and accuracy of the algorithm. The simulation results show that the improved algorithm have better general performance in image completion. Not only the PSNR values are improved, but also the restoration results can better satisfy people's visual requirements.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学的实践与认识》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:林群
  • 地址:北京大学数学科学学院
  • 邮编:100871
  • 邮箱:bjmath@math.pku.edu.cn
  • 电话:010-62759981
  • 国际标准刊号:ISSN:1000-0984
  • 国内统一刊号:ISSN:11-2018/O1
  • 邮发代号:2-809
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22973