位置:成果数据库 > 期刊 > 期刊详情页
Link Prediction in Brain Networks Based on a Hierarchical Random Graph Model
  • ISSN号:1007-9432
  • 期刊名称:《太原理工大学学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TM715[电气工程—电力系统及自动化]
  • 作者机构:[1]School of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
  • 相关基金:the National Natural Science Foundation of China (Nos. 61170136, 61373101, 61472270, and 61402318); the Natural Science Foundation of Shanxi (No. 2014021022-5); the Special/Youth Foundation of Taiyuan University of Technology (No. 2012L014) and Youth Team Fund of Taiyuan University of Technology (Nos. 2013T047 and 2013T048).
中文摘要:

Link prediction attempts to estimate the likelihood of the existence of links between nodes based on available brain network information, such as node attributes and observed links. In response to the problem of the poor efficiency of general link prediction methods applied to brain networks, this paper proposes a hierarchical random graph model based on maximum likelihood estimation. This algorithm uses brain network data to create a hierarchical random graph model. Then, it samples the space of all possible dendrograms using a Markov-chain Monte Carlo algorithm. Finally, it calculates the average connection probability. It also employs an evaluation index.Comparing link prediction in a brain network with link prediction in three different networks(Treponemapallidum metabolic network, terrorist networks, and grassland species food webs) using the hierarchical random graph model, experimental results show that the algorithm applied to the brain network has the highest prediction accuracy in terms of AUC scores. With the increase of network scale, AUC scores of the brain network reach 0.8 before gradually leveling off. In addition, the results show AUC scores of various algorithms computed in networks of eight different scales in 28 normal people. They show that the HRG algorithm is far better than random prediction and the ACT global index, and slightly inferior to local indexes CN and LP. Although the HRG algorithm does not produce the best results, its forecast effect is obvious, and shows good time complexity.

英文摘要:

Link prediction attempts to estimate the likelihood of the existence of links between nodes based on available brain network information, such as node attributes and observed links. In response to the problem of the poor efficiency of general link prediction methods applied to brain networks, this paper proposes a hierarchical random graph model based on maximum likelihood estimation. This algorithm uses brain network data to create a hierarchical random graph model. Then, it samples the space of all possible dendrograms using a Markov-chain Monte Carlo algorithm. Finally, it calculates the average connection probability. It also employs an evaluation index. Comparing link prediction in a brain network with link prediction in three different networks (Treponemapallidum metabolic network, terrorist networks, and grassland species food webs) using the hierarchical random graph model, experimental results show that the algorithm applied to the brain network has the highest prediction accuracy in terms of AUC scores. With the increase of network scale, AUC scores of the brain network reach 0.8 before gradually leveling off. In addition, the results show AUC scores of various algorithms computed in networks of eight different scales in 28 normal people. They show that the HRG algorithm is far better than random prediction and the ACT global index, and slightly inferior to local indexes CN and LP. Although the HRG algorithm does not produce the best results, its forecast effect is obvious, and shows good time complexity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《太原理工大学学报》
  • 中国科技核心期刊
  • 主管单位:山西省教育厅
  • 主办单位:太原理工大学
  • 主编:黄庆学
  • 地址:太原市迎泽西大街79号
  • 邮编:030024
  • 邮箱:tyutxb@tyut.edu.cn
  • 电话:0351-6014376 6014556
  • 国际标准刊号:ISSN:1007-9432
  • 国内统一刊号:ISSN:14-1220/N
  • 邮发代号:22-27
  • 获奖情况:
  • 全国高校学报优秀期刊一等奖、二等奖,国家双效期刊奖,华北十佳期刊优秀奖,山西省一级期刊奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9375