位置:成果数据库 > 期刊 > 期刊详情页
半监督条件随机场的高光谱遥感图像分类
  • ISSN号:1007-4619
  • 期刊名称:《遥感学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京航空航天大学宇航学院,北京100191, [2]数字媒体北京市重点实验室,北京100191
  • 相关基金:国家自然科学基金(编号:61501009,61371134和61071137)
中文摘要:

善于捕捉空间信息的条件随机场模型虽然已被应用于高光谱遥感图像分类,但条件随机场的性能受到了标注训练样本数量的制约。为解决上述问题,本文提出了一种半监督条件随机场模型用于高光谱遥感图像分类。在该模型中,首先,利用空间-光谱拉普拉斯支持向量机定义关联势函数,以利用未标注样本中包含的信息获取样本类别概率;然后,在交互势函数中嵌入未标注的空间邻域样本,以充分利用空间信息实现对样本类别概率的修正;最后,采用分布式学习策略和平均场完成半监督条件随机场的训练和推断。本文在两个公开的高光谱数据集(Indian Pines数据集,Pavia University数据集)上进行了实验。实验结果表明Kappa系数提升3.94%。

英文摘要:

Hyperspectral remote sensing image classification is one of the enormous challenges in the field of applied remote sensing. Tradi- tionally, supervised methods, such as Support Vector Machine (SVM), dominate this area. Especially, Conditional Random Field (CRF) ex- cels in solving this kind of problem in most cases, due to its prominent ability in formulating the spatial relationship. However, CRF suffers from the availability of large amount of labeled samples, which is labor- and time-consuming to obtain in practice. The accuracy tends to de- crease dramatically once labeled samples are not adequate or informative enough, To solve the above problem, a semi-supervised CRF mod- el is proposed in this paper. In the semi-supervised CRF model, the association potential is defined as the spatio-spectral Laplacian Support Vector Machine (ssLapSVM), to exploit the information contained in the unlabeled samples. And the multi-class probability for each sample is obtained by the ssLapSVM with the one-versus-one scheme. In addition, the interaction potential is newly designed by introducing a weight into the Potts model. Note that, in the classification of hyperspectral remote sensing with limited labeled samples, unlabeled neighbors of one labeled samples may often exist. Thus, the labels of these unlabeled neighbors are assigned based on maximum probability acquired by the ssLapS- VM, and use the maximum probability as a weight. In the training phrase, the optimal parameters in the association potential, i.e. ssLapS- VM, is firstly trained, and then the whole semi-supervised CRF model is trained to get the optimal parameters in the interaction potential. In the inference phrase, mean-field is adopted to find the optimal label configuration over the testing set. The performance of the proposed semi-supervised CRF model is evaluated on two well-known benchmarks, i,e. Indian Pines scene and Pavia University scene. The objective comparison experiments are carried out among some state-of-the-art methods in term

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遥感学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地理学会环境遥感分会 中国科学院遥感应用研究所
  • 主编:顾行发
  • 地址:北京市安外大屯路中国科学院遥感与地球研究所
  • 邮编:100101
  • 邮箱:jrs@irsa.ac.cn
  • 电话:010-64806643
  • 国际标准刊号:ISSN:1007-4619
  • 国内统一刊号:ISSN:11-3841/TP
  • 邮发代号:82-324
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16827