位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯决策树的交通事件持续时间预测
  • ISSN号:0253-374X
  • 期刊名称:《同济大学学报:自然科学版》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]同济大学交通运输工程学院,上海200092
  • 相关基金:国家自然科学基金资助项目(70401016)
中文摘要:

采用基于贝叶斯方法的决策树算法,利用上海市中心城区1536个交通事件持续时间数据,建立交通事件持续时间的预测模型。结果表明,事件类型是决策树中的第一层测试属性,不同类型事件的特性属性在决策树中的位置并不相同。并用384个交通事件数据对模型的预测精度进行检验。检验结果表明,抛锚事件持续时间预测误差小于10min的正确率为79%,而交通事故持续时间预测误差小于20min的正确率为65%。基于贝叶斯推理的决策树算法比仅基于贝叶斯或仅基于决策树算法的分类精度更高,鲁棒性更强。

英文摘要:

The paper presents a prediction method of traffic incident duration of expressway, grounded on the Bayesian method-based decision tree classification algorithm and 1536 in cident data of Shanghai central city expressway. And 384 incident data were adopted to test the prediction accuracy of this model. The results show that the incident type is the first layer of the decision tree and different incident has different test attributes. The prediction accuracy of anchor duration is 79 % with an error of 10 minutes while that of accident duration is 65 % with an error of 20 minutes. So the Bayesian method-based decision tree algorithm is more accurate and stabilized than the method based on Bayesian method or decision tree respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《同济大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:同济大学
  • 主编:李杰
  • 地址:上海四平路1239号
  • 邮编:200092
  • 邮箱:zrxb@tongji.edu.cn
  • 电话:021-65982344
  • 国际标准刊号:ISSN:0253-374X
  • 国内统一刊号:ISSN:31-1267/N
  • 邮发代号:4-260
  • 获奖情况:
  • 国家双百期刊,第二届国家期刊奖重点科技期刊奖,1999年全国优秀高校自然科学学报一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34557