Existence of multiple solutions for semilinear elliptic equations in the annulus
- ISSN号:1005-1031
- 期刊名称:Applied Mathematics-A Journal of Chinese Universit
- 时间:0
- 页码:263-268
- 语言:英文
- 分类:O175.15[理学—数学;理学—基础数学] O175.25[理学—数学;理学—基础数学]
- 作者机构:[1]School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China, [2]Department of Biotechnology, Beijing City University, Beijing 100094, China
- 相关基金:Supported by the National Natural Science Foundation of China (10726004); the Natural Science Foundation for the Youth of Shandong Province (Q2007A02)The authors would like to thank Professor Zhao Zengqin for helpful discussions. The authors also thank the referee for valuable suggestions.
- 相关项目:临界点理论及其对非线性微分方程的应用
关键词:
解的存在性, 半线性椭圆型方程, 狄利克雷, 正径向解, 边界条件, 次线性, 超线性, 诺伊曼, fixed point index, Dirichlet problems, annulus
中文摘要:
Δu +λg (|x|) 的光线的答案的存在 f (u)= 0 在里面与 Dirichlet (Dirichlet/Neumann ) 边界条件废除 i 被调查。如果 f 是超级的,这些问题在任何体环上有至少二个积极光线的答案,这被证明在 0 点线性并且在 ∞
线性的潜水艇。
英文摘要:
The existence of radial solutions of Δu + λg(|x|)f(u) = 0 in annuli with Dirichlet(Dirichlet/Neumann) boundary conditions is investigated.It is proved that the problems have at least two positive radial solutions on any annulus if f is superlinear at 0 and sublinear at ∞.